
 

 

 

 
 

 
FileMaker Pro™ 

Matrix Data Modelling 
[for FileMaker v6 and earlier] 

Paper prepared by R J Cologon PhD 

October 2002 

Background 

FileMaker Pro™ provides immediate and highly accessible means by which data from a 

related file can be accessed. However when it comes to accessing data which is related to 

a related file, the plot thickens considerably. 

 

In multi-layered relational file structures, it is often necessary to access data from a table 

in a location which is several relationships away from the point where it is to be used. For 

example in a school solution, student names and details may be in a main table, the 

subjects the students are enrolled in may be in a related table, and attendance records 

for each subject may be in an attendance table which relates to the subject table. There 

will be occasions when it is desired to access attendance records against each student 

record in the main student file. 

 

The most commonly used and understood technique in FileMaker Pro programming for 

accessing data from a remote table, is the creation of unstored calculation fields in each 

of the files in between the location where the data are stored and the file where they are 

needed. 

 

This technique is sometimes referred to as ‘shunting’ or ‘tunnelling’. It may be an 

effective solution in some cases, however it can cause the field definitions of files to 

become bloated with large numbers of unstored calculations serving the sole purpose of 

providing conduits for data being passed up (or down) the line to other files. A simple 

implementation is shown in the diagram at figure 1. 

 

Key_xYWn= FileX::Xn

Key_wX Key_xX

File W

File X

Key_yZ

Key_yY

File Y

Key_zZ

File Z

UniqueID_W

ValueN

Yn= FileZ::ValueN

Xn= FileY::Yn

Data Shunting
A relatively efficient method when only a few values are involved

Figure 1

• requires three unstored calculations to retrieve one value from file Z

• requires ninety unstored calculations to retrieve thirty values from file Z
 

http://www.nightwing.com.au/FileMaker/ CobaltSky@nightwing.com.au



Matrix Data Modelling  Page 2 of 5 
 

 

 

 

Data shunts may do the job relatively effectively when the number of fields is small. As 

indicated on the diagram, the number of unstored calculations required is a multiple of 

the number of values to be retrieved and the number of files between the source and 

destination. This potential deluge of unstored calculations can be cumbersome and 

inefficient - and may also make it difficult to focus on the true role and purpose of the 

data within each file in a solution. 

An Alternative Approach 

It may be of interest that ‘shunting’ is not the only approach by which a value may be 

accessed from a file which is several relationships away in the relational structure. An 

alternative technique based on the implementation of data matrices provides a workable 

alternative which may be preferable in some situations. 

 

For the purposes of explanation, imagine a relational structure in which four files (let’s 

call them W, X, Y and Z) are related in a linear fashion, so that file X is related to file W, 

file Y is related to file X and file Z is related to file Y. The question is then how, within the 

W->X->Y->Z structure, a value in file Z can be referenced directly against appropriate 

related values in file W. 

The Basic Technique 

The alternative method, a matrix model, works like this: 

• You have a direct chain of relationships from file W to file X, from file X to file Y, from 

file Y to file Z. 

• You have a field in W which links it to a corresponding field in X. For clarity, lets call 

the two fields Key_wX and Key_xX. 

• X has a relationship to Y based on some other key which is stored in both X and Y. 

Lets call them Key_xY and Key_yY. 

• To get at a field in Y directly from W, first create an unstored calculation field in W 

called Key_wY which picks up the value for Key_xY via the existing relationship to X. 

Then create a relationship from W to Y which matches Key_wY directly to Key_yY. 

• Finally, to get at a field in Z directly from W, create an unstored calculation field in W 

called Key_wZ which picks up the value for Key_yZ via the relationship now 

established to Y. Then create a third relationship within W linking it to Z by matching 

Key_wZ directly to Key_zZ. 

 

Key_xYwY= FileX::KeyxY

Key_wX Key_xX

File W

File X

Key_yZ

Key_yY

File Y

Key_zZ

File Z

UniqueID_W

ValueN

wZ= FileY::KeyyZ

Matrix Data Modelling
A highly efficient method when multiple values are involved

Figure 2

ValueN

• requires two unstored calculations and two relationships to retrieve one value from file Z

• requires two unstored calculations and two relationships to retrieve thirty values from file Z
 



Matrix Data Modelling  Page 3 of 5 
 

 

 

 

As can be seen at figure 2 (above) when only a single value is to be retrieved the matrix 

data model is (arguably) no more efficient than the shunting method, in that it requires 

two unstored calculations and two relationships to achieve the same outcome. However 

as soon as there are two or more values to be retrieved, the matrix model is markedly 

more efficient, still requiring only two unstored calculations and two relationships as 

compared to six or more unstored calculations to achieve the same result with a shunting 

technique. 

 

When the number of values to be retrieved from other files across a relational solution is 

significant, considerable efficiencies are to be gained by using a matrix-based technique. 

Moreover when the file size is large, when further calculations are dependent on the 

retrieved values, and/or when portal displays are required to include composite 

calculation results (eg calculations which draw on values from more than one file) a 

matrix model has the potential to offer considerable performance advantages. 

 

Whilst the example discussed here relates to four files in a linear relationship, the 

technique can be used in the reverse direction (eg to bring values from W into the Z file), 

can be established simultaneously across different branches of a complex structure, and 

can be implemented in bipolar formations to allow same tier values within different 

branches of the structure to be related. 

The Inverted Relationship Matrix 

Implicit within the principles of matrix modelling is the ability to establish logical 

connections in more than one direction. Thus in our data structure in which the four files 

W, X, Y and Z are related, a value in W can be accessed against corresponding (related) 

values in file Z in the following way: 

• You have a field in Z which is the ‘foreign key’ for the relationship from Y to Z. In the 

preceding example, this key field was referred to as Key_zZ. 

• A relationship can therefore be established in Z which uses the Key_Key_zZ field as 

the basis of an ‘upwards’ link to Y, by matching Key_zZ to the Key_yZ field in Y. 

• Via this new relationship, it is then possible to create an unstored calculation field in 

Z which references the field Key_yY. This in turn can be used as a primary key in Z 

for a relationship to X which matches Key_zX in Z to Key_xY in X. 

• Finally, to get at a field in W directly from Z, create an unstored calculation field in Z 

called Key_zW which picks up the foreign key value for Key_xX via the relationship 

now established to X. Then create a third relationship within Z linking it to W by 

matching Key_zW directly to Key_wX. 

A rudimentary form of the inverted matrix is illustrated at figure 3 (below). 

 

Key_xY

zX= FileY::Key_yY

Key_wX Key_xX

File W

File X

Key_yZ

Key_yY

File Y

Key_zZ

File Z
UniqueID_W

ValueP

zW= FileX::KeyxX

The Inverted Matrix
A highly efficient method when multiple values are involved

Figure 3

ValueP

 
 



Matrix Data Modelling  Page 4 of 5 
 

 

 

 

At this point it is possible to see that data can be passed both up and down the tiers of 

the relational data structure using direct referencing and without the aid of ‘shunts’ or 

‘tunnelling’. 

Bipolar Matrix modelling 

The full significance of the ability to establish matrix-based links in both directions, 

becomes clear within the context of a three dimensional model where multiple branches 

of data relationships can be inter-related by combining techniques for data matching 

working in both directions at simultaneously. 

 

To use an example, lets suppose that file W holds student personal details, file X holds 

course enrolments. file Y holds subject selections and file Z holds Assignments set. 

 

Now let’s suppose that File W also has files V and U associated with it, where V holds 

data about halls of residence that students are living in, and U holds details of the peer 

support groups operating within each hall. 

 

The challenge of determining the dates of meetings of peer support groups students who 

have been set a particular assignment are in requires that a relationship between Z and 

U be established. Depending on the nature of the data and keys upon which the 

relationships have been established, a direct relationship may be possible - but if not, 

bipolar matrix modelling is one means by which the required related keys can be 

acquired in Z to facilitate a direct relationship to U. 

 

To bring this about, the following considerations apply: 

• You have a field in W which links it to a corresponding field in V. In line with previous 

examples these fields can be referred to as Key_wV and Key_vV. 

• V has a relationship to U based on some other key which is stored in both V and U 

which we are referring to as Key_vU and Key_uU. 

• To get at a field in U directly from W, we will require an unstored calculation field in 

W called Key_wU which picks up the value for Key_vU via the existing relationship to 

V. Thus a relationship can be established from W to U which matches Key_wU 

directly to Key_uU. 

• Finally, to get at a field in U directly from Z, create an unstored calculation field in Z 

called Key_zU which picks up the foreign key value for Key_wU via the inverted 

relationship previously decsibed which linked Z directly to W. Then create an 

additional relationship within Z linking it to U by matching Key_zU directly to 

Key_uU. 

 

Not infrequently, however, it is desirable that values be retrieved in both directions 

within the same group of files. Thus the principles of modelling and inverted modelling 

may be necessary within the same subset of files, to pass a value across the data 

structure, while simultaneously passing values back in the other direction. 

 

To illustrate, this, let’s assume that in the first example of a matrix data model (provided 

on page 2 above) it is necessary to pass a value ‘P’ from W down to Z at the same time 

as retrieving the value ‘N’ from Z to W. To achieve this, it is possible to implement 

normal and inverted matrices simultaneously (ie overlaid upon one another within the 

same relational file structure). The resulting bipolar structure provides the potential for 

fully integrated data pathways throughout a solution. 

 

This technique facilitates the passage of data in a way which would be almost beyond 

contemplation if using data shunting methodologies. 

 

A rudimentary example of a bipolar matrix, bringing together the matrices illustrated in 

figures two and three (above) is provided at Figure 4. 



Matrix Data Modelling  Page 5 of 5 
 

 

 

 

 

Key_xYwY= FileX::KeyxY

Key_wX Key_xX

File W

File X

Key_yZ

Key_yY

File Y
UniqueID_W

wZ= FileY::KeyyZ

The Bipolar Matrix
A highly efficient method when multiple values are involved

Figure 4

ValueN

zX= FileY::Key_yY

Key_zZ

File Z

zW= FileX::KeyxX

ValueP

ValueP

ValueN

 

 

Thus a three dimensional logical ‘data map’ can be assembled, based on a network of 

unstored key fields, through which related data can be drawn directly to any point in the 

data flow via a single step data call (based on the matrix key system) rather than via 

lengthy lines of data shunts. 

An option to be considered in each case: 

This approach is the core of matrix data modelling. Relationships based on these 

principles can be created from within each file and used to validate, summarise, verify 

and calculate with reference to the values local to that file, making it possible to simulate 

regressions within multi-dimensional data matrices. 

 

Whilst it is by no means the purpose of this paper to suggest that the techniques 

described are a perfect or even a preferred solution for all cases, they nevertheless offer 

a valuable alternative which should be considered in the formulation of any complex data 

structure which is to be supported in a FileMaker Pro solution. 

 

 

 

Prepared by: © 2002 NightWing Enterprises 

R J Cologon, PhD 

NightWing Enterprises 

Melbourne,  Australia 

 

 

 

 

* FileMaker Pro is a Trademark of FileMaker Inc. 

CobaltSky@nightwing.com.au

http://www.nightwing.com.au/FileMaker/


